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Abstract

High spatial resolution (∼100 m) thermal infrared band imagery has utility in a variety of applications in environmental monitoring. However,
currently such data have limited availability and only at low temporal resolution, while coarser resolution thermal data (∼1000 m) are routinely
available, but not as useful for identifying environmental features for many landscapes. An algorithm for sharpening thermal imagery (TsHARP) to
higher resolutions typically associated with the shorter wavebands (visible and near-infrared) used to compute vegetation indices is examined over an
extensive corn/soybean production area in central Iowa during a period of rapid crop growth. This algorithm is based on the assumption that a unique
relationship between radiometric surface temperature (TR) relationship and vegetation index (VI) exists at multiple resolutions. Four different
methods for defining a VI−TR basis function for sharpening were examined, and an optimal form involving a transformation to fractional vegetation
cover was identified. The accuracy of the high-resolution temperature retrieval was evaluated using aircraft and Landsat thermal imagery, aggregated
to simulate native and target resolutions associated with Landsat, MODIS, and GOES short- and longwave datasets. Applying TsHARP to simulated
MODIS thermal maps at 1-km resolution and sharpening down to∼250m (MODISVI resolution) yielded root-mean-square errors (RMSE) of 0.67–
1.35 °C compared to the ‘observed’ temperature fields, directly aggregated to 250 m. Sharpening simulated Landsat thermal maps (60 and 120 m) to
Landsat VI resolution (30 m) yielded errors of 1.8–2.4 °C, while sharpening simulated GOES thermal maps from 5 km to 1 km and 250 m yielded
RMSEs of 0.98 and 1.97, respectively. These results demonstrate the potential for improving the spatial resolution of thermal-band satellite imagery
over this type of rainfed agricultural region. By combining GOES thermal data with shortwave VI data from polar orbiters, thermal imagery with 250-
m spatial resolution and 15-min temporal resolution can be generated with reasonable accuracy. Further research is required to examine the
performance of TsHARP over regions with different climatic and land-use characteristics at local and regional scales.
© 2006 Published by Elsevier Inc.
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1. Introduction

High spatial resolution (≤102 m) thermal infrared (TIR)
band imagery has utility in a variety of applications in
environmental monitoring, which include detecting conditions
conducive to wildfire, assessing ecosystem health and drought
severity (Quattrochi & Luvall, 2004), monitoring volcanic
eruptive activity (Pieri & Abrams, 2005), and exploring urban
heat island effects (Voogt & Oke, 2003). A common use of
thermal data is to derive surface energy budgets (Diak et al.,
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2004), with high-resolution thermal providing assessments of
evapotranspiration (ET) down to scales of individual agricul-
tural fields (Norman et al., 2003) and evaporative losses along
canals and riparian corridors (Loheide Ii & Gorelick, 2005).
This type of information is needed to reliably plan water
distribution in the western U.S. as well as in other arid and semi-
arid regions around the world.

Satellite-based thermal datasets currently available are
summarized in Table 1. These datasets reflect a tradeoff
between temporal and spatial resolution such that the systems
have either high-spatial/low-temporal resolution (e.g., Landsat
Thematic Mapper — TM; and Landsat Enhanced Thematic
Mapper Plus— ETM+) or low-spatial/high-temporal resolution
(e.g., National Oceanic and Atmospheric Administration-Ad-
vanced Very High Resolution Radiometer — NOAA-AVHRR;
Terra/Aqua-Moderate Resolution Imaging Spectrometer —
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Table 1
Resolutions of vis/NIR and thermal bands of currently available spaceborne
systems

Sensor Satellite vis/NIR bands
spatial resolution

Thermal band
spatial resolution

Revisit
time

ETM+ Landsat 7 30 m 60 m 16 days
ASTER Terra 15 m 90 m On demand
TM Landsat 5 30 m 120 m 16 days
MODIS Terra, Aqua 250 m/1 km⁎ 1 km 1–2/day
AVHRR NOAA 1 km 1 km 2/day
GOES imager GOES \ 5 km 15 min

ETM+ — Enhanced Thematic Mapper Plus.
TM — Thematic Mapper.
ASTER — Advanced Spaceborne Thermal Emission and Reflection
Radiometer.
MODIS — Moderate Resolution Imaging Spectroradiometer.
GOES — Geostationary Operational Environmental Satellites.
⁎MODIS NDVI products are 16 day composite (MOD13Q1 and MOD13A2 for
250 m and 1 km, respectively).
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MODIS; Geostationary Operational Environmental Satellite —
GOES). ASTER data are only available by demand and
therefore provide only sporadic temporal coverage at a given
site. The Landsat 7 satellite has been experiencing technical
difficulties with its Scan Line Corrector since May 31, 2003,
resulting in striping that makes the imagery difficult to use for
research and operational applications. At the time of writing,
Landsat 5 has been operating for 22 years, and its lifetime is
uncertain. The continuation of thermal band imaging on
Landsat Data Continuity Mission platforms is currently under
debate, and such high-resolution thermal data may soon be
unavailable at any temporal resolution.

A technique to derive higher resolution land surface
temperature (LST) from other available data is therefore highly
desirable. For many landscapes, variability in LST is driven
primarily by variations in vegetation cover amount. The
functional relationship between the spaceborne-derived radio-
metric surface temperature (TR) and vegetation indices (VIs)
such as the Normalized Difference Vegetation Index (NDVI),
which are generally available at finer spatial resolution than
thermal band data (see Table 1), has been exploited by various
remote sensing based energy balance modeling schemes for
constraining/defining model variables/parameters (e.g., Gillies
& Carlson, 1995; Moran et al., 1994; Price, 1990). A technique
for using empirically derived NDVI-TR relationship to disag-
gregate TR to the shortwave band resolution has been described
and evaluated for study sites in the Southern Great Plains
(Anderson et al., 2004a; Kustas et al., 2003).

Kustas et al. (2003) used a 2nd degree polynomial least
squares regression to describe the relationship between NDVI
and TR, and obtained errors of ∼1.5 °C when disaggregating
∼1550 and 770 m resolution surface temperature maps to
250 m, simulating an application to MODIS-resolution datasets.
However, no additional information was gained in sharpening
thermal imagery at resolutions finer than 100 m, in comparison
with assuming a uniform sub-pixel temperature distribution.
These results are consistent with an independent spatial scaling
study showing that the greatest loss of TR spatial variability
came at pixel resolutions larger than 200–400 m, the typical
dimension of the agricultural field boundaries (French, 2001).
However, it is hypothesized that by better describing the
NDVI−TR relationship the errors that result from sharpening
TR may decrease and some value may be gained also at finer
resolutions.

In this paper, the original sharpening algorithm presented by
Kustas et al. (2003) is refined, exploring alternative sharpening
basis functions and evaluating their performance over an
extensive corn/soybean production area in central Iowa during
a period of rapid crop growth. Sharpening as applied to TM,
ETM+, MODIS and GOES thermal imagery is simulated using
high-resolution aircraft and Landsat imagery aggregated to
coarser resolutions, and expected errors in retrieved temperature
are evaluated over this agricultural landscape at watershed and
regional scales.

2. Methodology

2.1. TsHARP algorithm

The TsHARP technique (previously referred to as disTrad),
developed by Kustas et al. (2003) and utilized by Anderson et al.
(2004a), is based on the assumption that a unique NDVI−TR
relationship exists within a sensor scene at multiple spatial
resolutions, largely related to fractional vegetation cover. This
assumption arises from the well-documented observation of
an inverse relationship between land surface temperature
and vegetation cover (e.g., Badeck et al., 2004; Running
et al., 1995; Tucker et al., 2001; White et al., 1997). The slope of
this relationship, however, varies with land cover and climate
(Karnieli et al., 2006), and therefore is site- and scene-specific.
In TsHARP, the parameters of the sharpening function are
determined within the context of the scene to be sharpened, and
thus reflect the local relationship between surface temperature
and vegetation cover fraction.

The sharpening methodology is as follows. A least-squares
regression is performed between TR and some function of
NDVI, aggregated to the coarser thermal resolution (NDVIlow):

̂TRðNDVIlowÞ ¼ f ðNDVIlowÞ ð1Þ
and then this regression relationship is applied to the NDVI data
at their finer, native resolution (NDVIhigh). Here the “hat”
symbol indicates a temperature value predicted using the VI
regression equation. The divergence of the retrieved tempera-
tures from the observed temperature field is due to spatial
variability in LST driven by factors other than vegetation cover
fraction (for example, soil moisture variations), and can be
assessed at the coarse scale:

D ̂TR low ¼ TR low− ̂TRðNDVIlowÞ ð2Þ
This coarse-scale residual field is added back into the

sharpened map such that the original temperature field is re-
covered through re-aggregation. The sharpened sub-pixel tem-
peratures within each coarse pixel are therefore computed via:

̂TR high ¼ ̂TRðNDVIhighÞ þ D ̂TR low ð3Þ



Table 2
Starting and target resolutions used for evaluating TsHARP

Starting resolution (m) 4800 960 120 60

Target resolution (m) 960 240 240 120 60 30 60 30 30
Landsat data X X X X X
Aircraft data X X X X X X X

X denotes the resolution pairs to which TsHARP was applied.
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where the first term of the right-hand side is evaluated using the
regression function, f, determined at the coarse scale (Eq. (1)),
and the second residual term from Eq. (2) is constant over the
coarse pixel area.

In developing the scene-dependent regression function
(Eq. (1)), coarse pixels containing water bodies must be
excluded based on a land cover classification or an NDVI
threshold. Water bodies tend to have both low temperature
and low NDVI and do not conform to the inverse TR−NDVI
trend defined by vegetated land pixels. Similarly, it is useful
to apply a selection criteria screening out coarse pixels with
high sub-pixel variability in NDVI. These pixels tend to be
outliers in TR−NDVI distributions, representing strongly
heterogeneous patches in the landscape. Kustas et al. (2003)
recommend stratifying pixels in bins of NDVI, and selecting
only the pixels with the lowest 25% coefficient of variation
in NDVI to form the regression equations. This conservative
measure will also tend to screen out pixels with unresolved
water bodies.

2.2. Alternative sharpening basis functions

Kustas et al. (2003) and Anderson et al. (2004a) applied this
sharpening technique to scenes over range and agricultural land
Fig. 1. The development of the agricultural crops in the Walnut Creek watershed duri
are presented by bars, cumulative percentage by lines) for each satellite and aircraft sc
from a centrally peaked in mid-June to a distribution skewed toward high NDVI in
in Oklahoma using a 2nd-degree polynomial regression be-
tween TR and NDVI:

f ðNDVIÞ ¼ a0 þ a1NDVIþ a2NDVI
2 ð4Þ

with a0, a1, and a2 being the scene-specific parameters derived
from the regression analysis. In those studies, a polynomial
function was selected over a simpler linear fit (a2=0 in Eq. (4))
because it yielded a higher coefficient of determination, r2. For
general applications, however, a polynomial function may be
unduly influenced by outliers at high and low NDVI values
caused, for example, by unresolved water bodies or urban struc-
tures, potentially yielding poor retrievals in some cases. Further-
more, there is no physical basis for assuming the 2nd order
relationship between TR and NDVI described by Eq. (4). In this
work, we seek a more robust and justifiable form for the sharp-
ening basis function, f.

A linear function has the advantage of being less sensitive to
outliers in the upper and lower tails of the NDVI distribution.
Physically, however, TR is expected to be more linearly cor-
related with fractional vegetation cover ( fC) than with NDVI, as
soil and vegetation contribute to the composite surface radio-
metric temperature in proportion to the fraction of the radio-
meter view that is occupied by each component (Norman et al.,
1995). Consequently, we also explored a transformation of
NDVI into values associated with cover fraction, as a possible
basis function.

Fractional vegetation cover ( fC) can be estimated from NDVI,
for example using the form suggested byChoudhury et al. (1994):

fC ¼ 1−
NDVImax−NDVI

NDVImax−NDVImin

� �0:625

ð5Þ

where NDVImin and NDVImax nominally describe the minimum
and maximum NDVI values expected within the scene, and are
ng SMEX02 study period, demonstrated by the NDVI distributions (percentages
ene (noted by L and A, respectively). Note the gradual shift of NDVI distribution
July, reflecting the corn and soybean rapid growth.
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determined here by the lower and upper 3% tails of the NDVI
distribution, chosen to exclude outliers. Pixels with NDVI outside
these limits are reset to the limit values, and therefore there is loss
of sensitivity to NDVI in 6% of the scene using this function.
Combining Eq. (4) (a2=0) with Eq. (5) yields

f ðNDVIÞ ¼ a0 þ a1 1−
NDVImax−NDVI

NDVImax−NDVImin

� �0:625
 !

: ð6Þ

Since a0, a1, NDVImax, and NDVImin are all constant for a
given scene, Eq. (6) may be rewritten in the form

f ðNDVIÞ ¼ a V
0−a

V
1ðNDVImax−NDVIÞ0:625 ð7Þ

in which

a V
0 ¼ a0 þ a1

a V
1 ¼ a1ðNDVImax−NDVIminÞ−0:625: ð8Þ

Aiming for a simple operational technique requiring a
minimal amount of scene-specific parameterization, an addi-
Fig. 2. The regression functions, describing the NDVI−TR relationships, developed f
and 60 m scales for the Landsat scene acquired on July 1, 2002.
tional NDVI transformation was examined, in which NDVImax

is set to 1 and NDVImin is set to 0, yielding

f ðNDVIÞ ¼ a0−a1ð1−NDVIÞ0:625: ð9Þ
While this simplified fraction vegetation cover basis function

(referred to as fCs) does not yield an actual estimate of fC, it appears
to yield a linear relationship between TR and f (NDVI), without the
need for defining NDVImax or NDVImin, or excluding pixels in the
tails of the NDVI distribution (except for those associated with
water bodies).

In summary, the following five forms of f(NDVI) have been
evaluated in terms of their utility as sharpening basis functions:

f ðNDVIÞ ¼

ðaÞa0 þ a1NDVI linear fit
ðbÞa0 þ a1NDVIþ a2NDVI2 polynomial fit

ðcÞa0 þ a1 1−
NDVImax−NDVI

NDVImax−NDVImin

� �0:625
 !

fc transformation

ðdÞa0−a1ð1−NDVIÞ0:625 simplified fc trans:
ðeÞ0 no sharpening

8>>>>>>><
>>>>>>>:

ð10Þ
Note that the fifth form (e) is included as a baseline case,

representing no sharpening, i.e., no incorporation of high-resolution
NDVI information. This case, where T̂R=TR low uniformly (referred
or forms A, B (panels A–C) and D (panels D–F) of Eq. (10) at the 960 m, 120 m,
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to as uniTR), served as a reference against which the improvement
due to sharpening using the first four forms (a–d) was assessed.

2.3. Multi-platform simulations

To evaluate the utility of the thermal sharpening procedure as
applied to data from various satellite platforms, Landsat and high-
resolution aircraft imagery were aggregated to simulate coarser-
scale datasets representative of the GOES/AVHRR, MODIS, and
Landsat systems. Landsat 7 data at 60-m native resolution were
aggregated to source resolutions of 4800 and 960 m (simulating
the native resolutions of the GOES andMODIS/AVHRR thermal
bands, respectively), and these coarse data were then sharpened to
target resolutions of 240, 120 and 60 m. Aircraft imagery at 6-m
resolution was aggregated to source resolutions of 960, 120 and
60m (simulatingMODIS, Landsat 5 and Landsat 7, respectively),
and sharpened to target resolutions of 240, 120, 60, and 30m. The
different combinations of initial and target resolutions examined
in this study are listed in Table 2.

3. Data

Data used in this study were collected during the Soil
Moisture–Atmosphere Coupling Experiment (SMACEX), con-
Fig. 3. The regression functions, describing the NDVI−TR relationships, developed fo
and 60 m scales for the aircraft scene acquired on July 1, 2002.
ducted in an upper Midwest corn and soybean production
region in central Iowa during the growing season of 2002. The
study focused on the Walnut Creek watershed south of Ames,
IA, which is representative of the Des Moines lobe occupying
approximately one third of the Iowa state area. A detailed
description of the site and the SMACEX experiment is provided
by Kustas et al. (2005).

Both airborne and spaceborne remote sensing imagery were
acquired over the SMACEX study area during periods of peak
corn and soybean growth, in late June to early July. Airborne
images were collected on June 16 and July 1, while Landsat
data were available on June 23 (Landsat 5) and July 1 and
8 (Landsat 7). The combination of these two sources provided
nearly weekly coverage through the peak growing season, with
an overlap on July 1 that was used for comparing the two
datasets.

3.1. Aircraft data

Multispectral imagery was obtained during SMACEX from
the Utah State University (USU) twin engine Seneca Piper II
aircraft. Airborne images in the optical range were acquired by
Nikon digital cameras with Thematic Mapper filters (0.545–
0.560, 0.665–0.680 and 0.795–0.809 μm) at 1.5 m resolution.
r forms A, B (panels A–C) and D (panels D–F) of Eq. (10) at the 960 m, 120 m,
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Individual scenes were first geometrically and atmospherically
corrected, geo-registered, and then mosaicked along the flight
lines to generate a large calibrated image covering an area of
∼210 km2 (30 km east–west; 7 km north–south, centered on
the Walnut Creek watershed). Thermal-infrared (10.5–12.5 μm)
imagery was acquired at 6 m resolution using an Inframetric 760
scanner. A line-shift correction was applied to remove effects of
aircraft movement, followed by a geo-rectification of individ-
ual images to a base map. The individual images were then
mosaicked and “at sensor” brightness temperature was atmo-
spherically corrected using MODTRAN (Berk et al., 1998) to
Fig. 4. Root Mean Square Errors (RMSE) associated with applying TsHARP to simu
obtain thermal maps at the different target resolutions.
obtain surface brightness temperature. The latter was corrected
for surface emissivity according to the procedure suggested by
Hipps (1989). The image strips were acquired from north to
south during ∼1 h flights between 11:15 AM and 12:15 PM on
both dates. A detailed description of the aircraft data acquisition
and analysis is provided by Chávez et al. (2005).

3.2. Satellite data

Spaceborne multispectral imagery from the Landsat TM (5)
and ETM+ (7) provided vis/NIR data at 30 m resolution and
lated native resolution of 960 m using the five forms of Eq. (10) at each date to



Table 3
Comparison of regression function performance in sharpening thermal Landsat
and aircraft images from 960 m resolution to various target resolutions

Date Target
resolution
(m)

T̄ R A
(°C)

σTR
(°C)

RMSE (°C)

Linear Polynomial fC fCs uniTR

Landsat scenes
6/23/2002 240 34.47 2.36 0.94 1.15 0.91 0.92 1.77
6/23/2002 120 34.47 2.53 1.16 1.46 1.12 1.13 2.00
7/1/2002 240 34.59 2.66 1.39 1.38 1.35 1.35 2.12
7/1/2002 120 34.58 2.95 1.81 1.82 1.79 1.78 2.48
7/1/2002 60 34.54 3.13 2.18 2.20 2.17 2.16 2.69
7/8/2002 240 31.96 2.15 0.67 0.67 0.72 0.67 1.25
7/8/2002 120 31.95 2.29 0.91 0.89 0.95 0.90 1.49
7/8/2002 60 32.07 2.42 1.21 1.18 1.25 1.20 1.68

Aircraft scenes
6/16/2002 240 34.21 5.21 1.97 2.17 2.10 2.00 3.33
6/16/2002 120 34.18 5.70 2.53 2.76 2.68 2.57 4.05
6/16/2002 60 34.16 6.05 3.00 3.27 3.16 3.07 4.53
6/16/2002 30 34.03 6.45 3.81 4.02 3.90 3.87 6.58
7/1/2002 240 39.51 4.43 1.81 1.78 1.78 1.77 3.63
7/1/2002 120 39.49 5.07 2.28 2.23 2.24 2.22 4.39
7/1/2002 60 39.47 5.47 2.69 2.59 2.60 2.60 4.85
7/1/2002 30 39.34 5.88 3.42 3.28 3.27 3.29 6.75

Statistics show average temperature (T̄R) and standard deviation (σTR) in the
‘observed’ fields, and RMSE between the ‘observed’ and sharpened images as
computed using the regression functions in Eq. (10a−d). The fifth method
(uniTR; Eq. (10e)) represents the case where no sharpening is applied, and
serves as a reference to which TsHARP performance is compared.
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TIR data at 120 and 60 m for Landsat 5 and 7, respectively.
The study site falls in an area overlapped by two adjacent
Landsat scenes, thus resulting in near weekly coverage. The
processing and analysis required for obtaining TR from the
single thermal band on Landsat are fully detailed by Li et al.
(2004). In short, the at-sensor brightness temperatures were
atmospherically corrected using MODTRAN (Berk et al.,
1998), and then corrected for emissivity using a fractional
cover mixture model (Sobrino et al., 2001) assuming a soil
emissivity based upon laboratory analysis of soil samples
collected in the watershed (an average value of 0.978 for the
Landsat thermal band) and a vegetation emissivity of 0.985
(Sobrino et al., 2001).

Watershed-scale evaluations of the sharpening algorithm
were performed over a subset (∼10 km north–south by
30 km east–west, centered at 41.96°N, 93.6°W) of the full
Landsat scene, encompassing the Walnut Creek watershed.
For regional-scale analyses, the full Landsat scenes were
used.

3.3. Image aggregation procedure

For this study, low resolution images used in the sharpening
procedure were derived by aggregating high-resolution TR and
NDVI data to the coarser source scales listed in Table 2. The TR
reference images (TR ref) at the target resolutions, used for validation
of the retrieval accuracy, were also generated through aggregation.
NDVI maps were aggregated by simple areal average. Note that
many studies have shown that NDVI is relatively scale-invariant
(e.g., Anderson et al., 2004b; De Cola, 1997; Friedl et al., 1995;
Hall et al., 1992). In aggregating the thermal images, the original
(finer resolution) TR data were first converted to radiance values
using the Stephan–Boltzmann law (R=εσT R

4 in which R is the
radiance, σ is Stephan–Boltzmann constant, and ε is the emis-
sivity). The emissivity was set to a constant value of 0.98 based
on Li et al. (2004) who found it to be fairly constant over the entire
scene for the duration of SMACEX. The derived radiances were
then aggregated, and converted back to temperature.

3.4. Evaluation of retrieval accuracy

The level of agreement between the reference (TR ref)
and sharpened (T̂R high) temperature fields was assessed by
means of the Root-Mean-Square-Error (RMSE) and Mean-
Absolute-Error (MAE) computed according to (Willmott,
1982):

RMSE ¼ n−1
Xn
i¼1

ð ̂TR high−TR ref Þ2
" #1=2

MAE ¼ n−1
Xn
i¼1

j ̂TR high−TR ref j
" #

ð11Þ

Recently, Willmott and Matsuura (2005) compared these two
measures of error and concluded that MAE is the preferable
metric, because RMSE is sensitive not only to error size, but
also to error variability and number of data points. In this study,
RMSE was found to be well correlated with MAE, with
RMSE≈1.5MAE (r2 =0.91). Therefore, error is reported as
RMSE to maintain comparability with previous studies,
although nominal MAE is easily estimated from the RMSE
and will have ≈45% lower values.

4. Results and discussion

4.1. Sharpening at the watershed scale

4.1.1. Evaluation of NDVI−TR regression basis functions
The development of the agricultural crops in the Walnut

Creek watershed during the SMEX02 study period is
demonstrated in Fig. 1, showing the distribution in NDVI for
each satellite and aircraft scene collected during the experiment.
As the growing season progressed, the NDVI values over the
watershed evolved from a centrally peaked distribution to a
distribution skewed toward high NDVI. These changes reflect
the corn and soybean rapid growth that occurred during
SMEX02, with canopy heights starting at nominally 0.15 and
0.75 m, for soybean and corn, respectively, reaching heights of
∼0.5 and 2 m by mid-July (Anderson et al., 2004b). Both
Landsat and aircraft imagery yielded similar distributions in
NDVI on July 1, the day when both datasets were available.

To ascertain the optimal regression function for this
landscape, the five functional forms in Eq. (10a–e) were
applied to each source–target resolution pair in Table 2, and the
characteristics of retrieval errors were examined in comparison
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with reference images at the target resolutions. Optimally, a
function that minimizes overall retrieval errors, and yields errors
with minimal dependence on local temperature/vegetation
cover conditions is desired.

Figs. 2 and 3 demonstrate regression functions developed for
the 1 July Landsat and aircraft scenes, respectively, using forms
a, b and d of Eq. (10) at the 960, 120, and 60 m scales. Note that
regression results using Eqs. (10c) and (10d) were very similar,
and therefore not shown. The fitting parameters varied only
slightly with resolution, reinforcing the assumption that the
NDVI−TR relationship is relatively scale independent. The
coefficient of determination (r2) ranged between 0.4 and 0.7 (all
statistically significant), being generally similar for all methods.
The 2nd degree polynomial (Eq. (10b)) is potentially most
Fig. 5. Statistic characteristics of the distributions of the errors yielded by TsHARP
problematic since it can be highly sensitive to outliers, yielding
a non-physical convex shaped curve in temperature at low
NDVI. Note that the aggregation process served to narrow the
dynamic range in both TR and NDVI. These plots show all
pixels within the scene. In practice, only a subset of points
showing low sub-pixel heterogeneity in NDVI would be used to
develop the regression equations, serving to filter out many of
the outliers apparent in these distributions. For this landscape,
however, such a filter did not significantly impact the derived
fits.

Errors associated with sharpening Landsat and aircraft
scenes from 960 m to a variety of target resolutions using the
5 different regression functions are presented in Fig. 4 and
Table 3. Fig. 4 demonstrates that the four sharpening
applied to simulated native resolution of 960 m to obtain 120 m thermal pixels.
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functions perform similarly and significantly better than uniTR
(Eq. (10e) — no sharpening applied). Generally, errors in-
creased at finer target resolutions. The RMSE for sharpening to
240 m was less than 1.5 and 2.2 °C for the Landsat and aircraft
imagery, respectively. For target resolutions of 60 m, RMSE for
Landsat and aircraft did not exceed 2.2 and 3.3 °C, respectively.
This decrease in accuracy with finer target resolutions is
expected, considering the increasing degree of sub-pixel
variability that must be retrieved.

Error characteristics also differ between scenes. Generally,
the aircraft data yielded higher RMSEs than did the Landsat
images. However, the aircraft scenes also showed larger in-
trinsic variability in observed temperature (reflected by the
Fig. 6. The dependence of retrieval error on vegetation cover amount, demonstrated b
NDVI-bin for the five scenes.
standard deviation in Table 3). This may be due to the fact that,
whereas Landsat images represent snapshots in time, the
individual aircraft images creating the mosaic were acquired
over a 1 h interval, causing a temporally-induced temperature
gradient over the scene from north to south. Therefore, the
errors associated with the two datasets are not directly
comparable. It does appear, however, that the retrieval errors
are related to overall scene heterogeneity, expressed in terms of
the standard deviation in TR(σTR).

Of the four sharpening functionals (Eq. (10a–d)), the poly-
nomial fit (Eq. (10b)) had the largest RMSE value for three out
of the five scenes studied here, particularly earlier in the
growing season. Moreover, the polynomial functional fit
y plotting the mean temperature bias, for sharpening from 960 to 120 m, at each



Fig. 7. The potential utilization of TsHARPfcS on ‘simulated’ MODIS imagery
demonstrated using the Landsat 7 data acquired on July 1. The upper panel (A) is
the simulated MODIS temperature field (960 m pixel size); the next (B) is the
‘observed’ temperature field (240 m pixel size), and the last (C) is the
temperature field created by TsHARP starting at 960 m and sharpening to 240 m.

554 N. Agam et al. / Remote Sensing of Environment 107 (2007) 545–558
generally yielded the highest mean bias errors n−1
Pð ̂TR−TRÞ

� �
while the linear (Eq. (10a)) and the simplified fraction-cover
(Eq. (10d)) methods generated the smallest biases (Fig. 5). The
Table 4
Sharpening error statistics associated with various combinations of simulated spaceb

Date Observing
instrument

Simulated
thermal

Simulated NDVI

6/16/2002 Aircraft Landsat 7 Landsat 7
7/1/2002 Aircraft Landsat 7 Landsat 7
6/16/2002 Aircraft Landsat 5 Landsat 5
7/1/2002 Aircraft Landsat 5 Landsat 5
6/23/2002 Landsat 5 MODIS MODIS
7/1/2002 Landsat 7 MODIS MODIS
7/8/2002 Landsat 7 MODIS MODIS
6/16/2002 Aircraft MODIS MODIS
7/1/2002 Aircraft MODIS MODIS
7/1/2002 Landsat 7 GOES MODIS/AVHRR
7/1/2002 Landsat 7 GOES MODIS

RMSE values were computed by comparing the ‘observed’ temperature fields with
linear function, however, generally showed the most strongly
skewed error distributions, relating to the non-linear relation-
ship between NDVI and TR.

The dependence of retrieval error on vegetation cover
amount is demonstrated in Fig. 6, showing the mean bias
for each regression method as a function of NDVI in bins of
width 0.1. In general, all methods yielded small biases at
the mid NDVI range, increasing at both high and low NDVI.
The linear method yielded the largest errors at low NDVI for
all dates, while the fraction vegetation cover based methods
generated errors that are most uniformly small over the full
range in NDVI, reflecting the fact that TR is expected to be
linear in vegetation cover fraction. It should be noted that
only a small number of pixels fall within the very low and very
high NDVI bins, meaning that statistics in these bins have less
significance.

These statistical analyses suggest that the polynomial fit
between TR and NDVI that was originally used by Kustas et al.
(2003) did not perform as well as the other sharpening
formulations for this agricultural landscape, being overly
sensitive to outliers and producing a non-physical turnover at
low NDVI. Retrieval errors from a linear regression showed
sensitivity to fractional vegetation cover, an undesirable
characteristic. The transformation to fraction vegetation cover
improved the linear correlation with surface temperature. Of the
two fC-based methods tested, the simplified method performed
similarly to the Choudhury et al. (1994) relationship and has the
benefit of not requiring specification of NDVImax and NDVImin

scaling parameters, and is applicable over the entire range in
NDVI present in the scene. The simplified fraction vegetation
cover method (hereafter TsHARPfcS method) is therefore used
for the rest of the analyses in this paper.

Note that these conclusions may be scene dependent and
further examination under different climate and land cover
conditions is required to decisively determine which of these
relationships universally yields better results.

4.1.2. Applications to simulated MODIS and Landsat imagery
Applying TsHARP to MODIS imagery can potentially

increase the spatial resolution of the thermal band data by a
orne systems

Native
resolution
(m)

Target
resolution
(m)

RMSE (°C)

TsHARPfCs uniTR

60 30 1.80 2.02
60 30 1.80 2.01
120 30 2.39 3.28
120 30 2.35 3.31
960 240 0.92 1.77
960 240 1.35 2.12
960 240 0.67 1.25
960 240 2.00 3.33
960 240 1.77 3.63
4800 960 0.98 1.42
4800 240 1.97 2.34

TsHARPfcS and uniTR fields.



Fig. 8. Application of TsHARPfcS with ‘simulated’ Landsat 5 imagery derived
from aircraft data acquired on July 1. The upper panel (A) is the simulated
Landsat TM temperature field (120 m pixel size); the next (B) is the ‘observed’
temperature field (30 m pixel size), and the last (C) is the temperature field
created by TsHARP starting at 120 m and sharpening to 30 m.
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factor of 4, from 1 km to 250 m. This spatial resolution may in
some cases be fine enough to monitor individual agricultural
fields. As the temporal resolution of MODIS Terra and Aqua
Fig. 9. The utility of TsHARPfcS applied to ‘simulated’ GOES thermal imagery with 1
1. The upper-left panel (A) is the simulated GOES temperature field (4800 m pixel siz
(C) is the temperature field created by TsHARPfcS starting at 4800 m and sharpen
‘observed’ temperatures, for TsHARP and uniTrad, respectively.
provide 1–2 images per day, depending on local cloud-cover
conditions, a day-to-day monitoring of individual fields may
become possible using sharpened MODIS thermal images. Fig. 7
demonstrates the potential utility of TsHARPfcS as applied to
MODIS resolution data, simulated with the Landsat 7 scene
acquired on July 1. The upper Fig. 7A approximates the MODIS
temperature field (960 m pixel size); the middle panel (Fig. 7b)
shows the original 60mLandsat 7 temperature field aggregated to
240 m (the “observed” scene, TR ref), and the bottom panel (Fig.
7c) shows the 960 m field sharpened to 240 m resolution.
Moisture and vegetation conditions were strongly variable across
the watershed on this date, and the RMSE of the sharpened image
was 1.35 °C (Table 4), slightly lower than that found by Kustas
et al. (2003). In comparison, the uniTR method yielded an RMSE
of 2.12 °C. Although there are detectable differences between
the observed and sharpened fields, in general the sharpening
algorithm recovered much of the detail apparent in Fig. 7B.
Clearly the sharpened image (Fig. 7C) provides significantly
better visual information content than does the original MODIS-
resolution image in terms of interpreting spatial variability in ET
at this watershed scale. Note, however, that the 250 m resolution
of theMODIS shortwave bands is not adequate to clearly separate
individual fields.

A similar experiment was conducted to examine the utility of
TsHARPfcS as applied to Landsat 5, sharpening 120-m thermal
fields to the 30-m resolution of the vis/NIR bands. The fields in
Fig. 8 were created from aircraft imagery on July 1, showing
temperature fields aggregated directly to 120 m and 30m, and the
-km NDVI products of MODIS derived from the Landsat 7 data acquired on July
e); the next (B) is the ‘observed’ temperature field (960 m pixel size), and the last
ing to 960 m. Panels (D) and (E) show the scatter plot of the modeled vs. the
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results of sharpening from 120 to 30 m. Qualitatively, good
similarity was observed between the two 30 m resolution images,
with TsHARPfcS providing considerably more detail than is
present in the 120 m image. Field edges are sharper, and even
subfield variability is reproduced with good fidelity. The RMSE
of the sharpened image was 2.35 °C, while uniTR yielded 3.31 °C
(Table 4). In contrast, Kustas et al. (2003), using a polynomial
regression function, found little improvement over uniTR when
sharpening images at native resolutions finer than 200 m. This
disparity could be due to the improved performance of the fC-
based regression function, but may also be related to spatial
characteristics of landscape features for the two study areas.

A third test (not shown), simulating sharpening of Landsat 7
data from 60 to 30 m resolution resulted in smaller errors
(RMSE=1.80 °C) in comparison with the 120 to 30 m test case
(RMSE=2.37±0.02 °C). This is expected due to the smaller
sharpening factor (×2 vs. ×4). However, uniTR provided similar
RMSE at these resolutions. While the quantitative impact of
sharpening is marginal in this case, Anderson et al. (2004a)
demonstrate that sharpened Landsat 7 thermal images have
significant utility in surface energy balance modeling in terms of
improved visual information content andmodel convergence rate.

4.2. Sharpening at the regional scale — applications to
simulated GOES data

By combining geostationary thermal data from the GOES
satellite (nominal pixel size over the study area of ∼5 km) with
Fig. 10. The result of applying TsHARPfcS to ‘simulated’ GOES thermal imagery in
Landsat 7 data acquired on July 1. The upper-left panel (A) is the simulated GOES t
field (240 m pixel size), and the last (C) is the temperature field created by TsHARPfcS
plot of the modeled vs. the ‘observed’ temperatures, for TsHARP and uniTR, respec
moderate resolution NDVI data from MODIS, thermal maps at
250 m spatial resolution and 15 min temporal resolution can
potentially be achieved. Figs. 9 and 10 present examples of
utilizing TsHARPfcS to sharpen simulated GOES thermal data
(Landsat 7 data aggregated to 4800 m resolution) over Iowa to
960 and 240 m, respectively, for July 1.

In this example, the RMSE of sharpened images were 0.98
and 1.97 °C for target resolutions 960 and 240 m, respectively,
while uniTR yielded errors of 1.42 and 2.34 °C (Table 4). While
the differences in RMSE between TsHARPfcS and uniTR were
relatively small in comparison with the earlier sharpening
exercises, the density scatter plots of sharpened vs. observed
temperature in Figs. 9 and 10 show clear benefit of TsHARPfcS
over uniTR.

Due to the assumption that vegetation cover amount is the
primary driver of temperature variations, the sharpening
algorithm described here cannot be applied to water bodies.
Coarse pixels within resolved water bodies therefore should be
left unsharpened. This is not greatly problematic, as contiguous
water pixels tend to have relatively uniform surface temperature.
However, as evident in Figs. 9 and 10, sub-pixels in close vicinity
to unresolved water bodies show large boxy anomalies, resulting
from the reintroduction of the coarse-scale residual ΔTR. There
may be instances where these waterside sub-pixels are of interest,
for example in studying evapotranspiration from riparian
corridors. Future papers will detail simple techniques for
addressing unresolved water bodies. Note also that urban areas
should be carefully considered, again because their NDVI−TR
conjunction with 250-m NDVI product from MODIS demonstrated using the
emperature field (4800 m pixel size); the next (B) is the ‘observed’ temperature
starting at 4800 m and sharpening to 240 m. Panels (D) and (E) show the scatter
tively.
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relationship may significantly differ from adjacent natural or
agricultural areas, and hence not be applicable. It may be that pre-
stratification of the image by land-cover class may provide better
results over strongly heterogeneous landscapes (Friedl & Davis,
1994).

5. Summary and conclusions

The need for high-spatial/high-temporal resolution thermal
data has led to a further examination of the sharpening
procedure first developed by Kustas et al. (2003). Four different
methods for determining the NDVI−TR relationship were
examined over the agricultural fields of Walnut Creek
watershed in Iowa during the growing season, using Landsat
and aircraft data, and the potential utilization of TsHARP at
regional scales with GOES and MODIS imagery was examined.

TsHARP was found to be fairly insensitive to the choice of
NDVI−TR relationship under the conditions of this study.
However, a 2nd-order polynomial regression tended to yield the
largest errors. The simplified fraction vegetation cover method
(TsHARPfcS) performed slightly better that the other methods,
likely due in part to the linearity between fC and TR. It is
recommended to use TsHARPfcS for sharpening surface tem-
perature imagery, although further investigation, under various
vegetation and climatic conditions, is required to support this
conclusion. Applying TsHARP to simulated MODIS 1 km
thermal maps to sharpen down to ∼250 m (MODIS VI
resolution) yielded RMSE of 0.67–1.35 °C, compared to the
‘observed’ temperatures, while RMSE results for uniTR
(no sharpening) were 1.25–2.12 °C. TsHARP decreased the
errors by ∼0.8 °C for all three Landsat scenes and by 1.3–
1.8 °C for the aircraft scenes. By sharpening MODIS, 250 m
thermal maps could be available daily, and more frequently if
applied to both Terra and Aqua overpasses. The discrepancies in
surface energy budget computations, caused by the sharpening,
will be the subject of a future investigation.

Sharpening simulated Landsat thermal maps (60 and 120 m) to
Landsat VI resolution (30 m) was found to yield slightly larger
errors compared to those found for theMODIS resolutions. RMSE
for TsHARPfcS and uniTR were 2.4 vs. 3.3 °C, respectively, for
120 m starting resolution, and 1.8 vs. 2.0 °C for starting resolution
of 60 m. Contrary to the findings of Kustas et al. (2003) these
results show significant improvement using TsHARPfcS versus
uniTR at 120 m resolution, although no real advantage was found
for sharpening from 60 to 30 m. However, there still may be
significant utility sharpening to 30 m for surface energy balance
modeling in terms of improved visual information content and
model convergence rate (Anderson et al., 2004a).

Lastly, sharpening simulated GOES thermal maps (derived
from a complete Landsat scene) from 5 km to 1 km and
250 m yielded RMSEs of 0.98 and 1.97, respectively. These
results prove a great potential in significantly enhancing the
thermal information available over this agricultural region.
Notwithstanding the uncertainties, 15 min thermal maps at
field scale resolution may be possible, permitting routine
monitoring of evaporative fluxes and stress conditions for the
two important crops (corn and soybean) produced in this
region. In fact the corn and soybean production in this study
area is indicative of a much larger agricultural region of the
United States, namely, the upper Midwest corn–soybean
region, which encompasses over 60 million ha and represents
approximately 60% of all U.S. cultivated cropland. Further
research is planned to examine the general applicability of
the TsHARP algorithms for different climatic regions and land-
use characteristics.

Although TsHARP may provide TR estimates at resolutions
more useful for environmental monitoring of different land
cover conditions, this thermal image sharpening technique is
unable to recreate land-surface temperature variations due to
unresolved soil-moisture anomalies. This technique therefore
does not preclude the need for high-resolution (b100 m)
satellite-based thermal imaging platforms for accurately
discriminating land cover having significantly different vege-
tation/crop cover and moisture conditions. In many instances
this will include environmentally sensitive areas such as riparian
corridors and wetland–dryland interfaces and other types of
transitional areas or ecotones.
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