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[1] The utility of a thermal image sharpening algorithm
(TsHARP) in providing fine resolution land surface
temperature data to a Two-Source-Model for mapping
evapotranspiration (ET) was examined over two agricultural
regions in the U.S. One site is in a rainfed corn and soybean
production region in central Iowa. The other lies within the
Texas High Plains, an irrigated agricultural area. It is
concluded that in the absence of fine (sub-field scale)
resolution thermal data, TsHARP provides an important tool
for monitoring ET over rainfed agricultural areas. In
contrast, over irrigated regions, TsHARP applied to
kilometer-resolution thermal imagery is unable to provide
accurate fine resolution land surface temperature due to
significant sub-pixel moisture variations that are not
captured in the sharpening procedure. Consequently,
reliable estimation of ET and crop stress requires thermal
imagery acquired at high spatial resolution, resolving the
dominant length-scales of moisture variability present
within the landscape. Citation: Agam, N., W. P. Kustas,

M. C. Anderson, F. Li, and P. D. Colaizzi (2008), Utility of thermal

image sharpening for monitoring field-scale evapotranspiration

over rainfed and irrigated agricultural regions, Geophys. Res. Lett.,

35, L02402, doi:10.1029/2007GL032195.

1. Introduction

[2] Over the last several decades, there has been a major
effort to develop methods for deriving spatially-distributed
evapotranspiration (ET) maps over landscapes by using
remote sensing imagery in the visible–near-infrared (VIS/
NIR) and the thermal infrared (TIR) bands in surface energy
balance models [Diak et al., 2004]. The spatial resolution of
the resulting ET maps is determined by the spatial resolu-
tion of the coarsest input, and the temporal frequency is
determined by the revisit time of the acquiring satellite
system. For water management applications and other
agricultural purposes, ET maps would be optimally pro-
duced daily at fine spatial resolution (<100 m). However, a
tradeoff exists between the spatial and temporal resolutions
of current remote sensing systems, such that they typically
have either high-spatial/low-temporal or low-spatial/high-
temporal resolution. This tradeoff is particularly significant
for satellite-based thermal imaging instruments, which have
2–10 times coarser resolution than do co-located VIS/NIR
sensors.

[3] With the currently available satellite systems, several
strategies can be applied for mapping ET over agricultural
areas. The first is to derive fine resolution (60–120 m) maps
at ca. monthly intervals using Landsat TIR data. This option
provides adequate within-field resolution, and provides the
most reliable estimates of field-scale ET. The shortcomings
of this method are the long time-lag between image acquis-
itions and the uncertainty as to whether thermal imaging
will be continued on the next generation Landsat satellites.
Alternatively, coarser resolution (1 km) ET maps can be
generated at �daily time steps using, for example, the
Moderate Resolution Imaging Spectrometer (MODIS) on
board the Terra/Aqua satellites [Nishida et al., 2003]. While
providing better temporal coverage, 1 km-scale maps cannot
capture within-field variations, which are important for
agricultural management at the field and farm level. A third
strategy utilizes the functional relationship between the
spaceborne-derived surface temperature and vegetation in-
dices to sharpen the 1 km MODIS TIR imagery to the
resolution of the MODIS VIS/NIR bands (250 m), deriving
near daily ET maps at scales marginally resolving the
typical field size (TsHARP) [Kustas et al., 2003; Agam et
al., 2007a, 2007b]. Provided that the sharpening algorithm
reasonably reproduces the actual land surface temperature
(LST) distributions at the target resolution, this approach
may provide the most optimal means for deriving routine
remotely-sensed ET maps at field scale.
[4] In this study, a Two-Source-Model (TSM) of surface

energy balance was used to derive ET maps using TIR data
at different spatial resolutions. Detailed description of the
model principles and formulation are given by Norman et
al. [1995] and Kustas and Norman [1999a, 1999b, 2000].
Briefly, the TSM is a land-surface parameterization of the
radiation and turbulent energy exchanges between the soil,
vegetation and lower atmosphere. Given an estimate of
fractional vegetation cover, the TSM partitions the surface
temperature and energy/water fluxes into soil and canopy
contributions, and has a built-in mechanism for detecting
thermal signatures of stress in the soil and canopy.
[5] The utility of TsHARP for TSM flux evaluations was

examined over two agricultural regions in the U.S.: a
rainfed corn and soybean production region in central Iowa,
and an irrigated agricultural area in the Texas Panhandle.
The goal was to estimate errors in ET incurred by using
sharpened thermal imagery in place of imagery acquired at
fine-scale native resolution. Although other TIR-based
energy balance models may have somewhat differing sen-
sitivity to errors in the input surface temperature field, the
TSM is considered here as one possible mapping from LST
to ET space to give a qualitative estimate of the impacts of
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image resolution on practical utility in water management
applications in these two representative agricultural areas.

2. Methodology

2.1. Sharpening Algorithm

[6] The TsHARP algorithm, originally developed by
Kustas et al. [2003] and refined by Agam et al. [2007a],
uses high-resolution information of vegetation cover frac-
tion, derived from VIS/NIR data in the form of the Nor-
malized Difference Vegetation Index (NDVI), to sharpen
temperature maps from coarser-resolution thermal bands.
The implicit assumption is that fractional vegetation cover,
which is related to NDVI, is one of the primary factors
affecting LST variations across a given scene. Operational-
ly, the NDVI data are aggregated to the coarser thermal
resolution and a least-squares regression is performed
between the radiometric temperature and a function
f(NDVI) that is related to fractional vegetation cover. The
regression parameters are then applied to the NDVI data at
their finer native resolution. Finally, this base map is re-
aggregated to the coarse thermal resolution and differenced
with the observed temperature field. These coarse-scale
residuals represent variability in temperature driven by
factors other than vegetation cover fraction (for example,
soil moisture variations). The residuals are added back into
the high-resolution base map, ensuring that the observed
temperature field will be recovered through re-aggregation.

2.2. Study Area and Satellite Imagery

2.2.1. Walnut Creek Watershed (WCW), Iowa—
Rainfed Agriculture
[7] A grid-box �10 km north–south by 30 km east–

west, encompassing the Walnut Creek Watershed (WCW;
centered at 34�440N 101�370W) was subset from a Landsat
ETM+ scene acquired on July 1, 2002. The WCW lies
within the upper Midwest corn and soybean production
region in central Iowa, characterized mainly by rainfed
agriculture. In this humid region, the most rapid growth in
corn and soybean crops is observed in June–July. During
this period, rainfall events are often in the form of thunder-
storms, providing brief and intense showers [Hatfield et al.,
1999]. The July 1 scene was acquired following a �10 day
dry-down interval, resulting in strong variability in soil
moisture and crop conditions.
2.2.2. Texas High Plains (THP), Texas—Irrigated
Agriculture
[8] A subset (�10 km north–south by 30 km east–west,

centered at 34�370N, 102�530W) of a full Landsat ETM+
scene (acquired on September 22, 2002) overlying the
northern part of the Texas-New Mexico state border was
used in this study. This area is part of the Southern High
Plains, within the larger Great Plains of the western United
States, and is mostly comprised of irrigated agricultural
fields [Colaizzi et al., 2006]. In the Texas High Plains
(THP) region, September is a relatively dry month, during
which the cotton crops are reaching maturity and are thus
unlikely to be irrigated, while emerging winter wheat crops
are typically receiving irrigation. The study area therefore
exhibited large variability in vegetation cover and moisture
conditions (due to irrigation) at the time of image acquisi-
tion. However, due to seasonality, net radiation and ET are

expected to be lower on average for the late September THP
scene than for the early July WCW scene described above.

2.3. Simulated Scaling Experiment

2.3.1. Pre-processing
[9] The two Landsat ETM+ scenes provided VIS/NIR

and TIR data at 30 and 60 m native resolution, respectively.
The scenes were atmospherically corrected using MOD-
TRAN [Berk et al., 1998]. The brightness temperatures
were then corrected for emissivity effects using a fractional
cover mixture model [Sobrino et al., 2001] to retrieve
surface radiometric temperature, following the procedure
described by Li et al. [2004].
2.3.2. Data Scaling
[10] Four spatial resolutions were examined in this study:

60, 120, and 240 (hereafter the ‘‘finer’’ or ‘‘target’’ reso-
lutions), and 960 m (hereafter the ‘‘coarse’’ resolution). In
order to avoid errors introduced by inter-sensor comparisons
caused by differences in view angle, pixel registration, and
overpass time, the Landsat ETM+ VIS/NIR and TIR bands
were spatially aggregated to simulate MODIS-resolution
data, sharpened, and then validated with respect to ETM+
TIR distributions at the finer resolutions. Note that unless
explicitly mentioned, the described processes were applied
similarly to both sites.
2.3.2.1. VIS/NIR Data
[11] During the Soil Moisture Atmosphere Coupling

Experiment (SMACEX) [Kustas et al., 2005], extensive
sampling of vegetation cover fraction and canopy architec-
ture was conducted over the WCW [Anderson et al., 2004]
and a supervised landcover classification at 30-m resolution
was performed [Doraiswamy et al., 2004]. Due to a lack of
ground-truth data over the THP, a 30-m landuse map for the
Texas scene was obtained by classifying the study area into
general landcover categories of agricultural land and natural
vegetation using a semi-unsupervised classification tech-
nique [Agam et al., in press].
[12] Following Anderson et al. [2004], who demonstrated

near-linear scaling in VI, NDVI was aggregated to resolu-
tions of 60, 120, 240, and 960 m and then cover fraction
was computer from NDVI at these resolutions. Canopy
height (affecting model surface roughness) was assigned
to the target grids using the ‘‘mixed class’’ technique
described by Anderson et al. [2004, 2007]. Accordingly,
the derived fluxes represent outputs one might obtain in
practice, using 30 m landuse maps (available, e.g., from the
National Land Cover Dataset [Homer et al., 2004]) in
conjunction with NDVI data available at the target resolu-
tion.
2.3.2.2. TIR Data
[13] Simulated TIR images at 120, 240 and 960 m

resolutions were generated by converting original bright-
ness temperature data at 60 m to radiance values using the
Stephan-Boltzmann law with an exponent of 4 [Becker and
Li, 1990; Norman and Becker, 1995], computing an average
radiance over the coarser pixel area, and then re-converting
to brightness temperature. The sharpening algorithm was
then applied to the coarse 960 m TIR field to create
sharpened temperature fields at each of the finer resolutions.
2.3.2.3. Weather Station Data
[14] For both sites, meteorological data used by the TSM,

consisting primarily of 30-min average wind speed, air
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temperature, relative humidity, and solar radiation, were
obtained from local weather stations �2 m above the
canopy layer and applied uniformly across the images.
2.3.3. Generation of Multi-scale Flux Maps
[15] For each of the sharpening target resolutions three

different types of flux maps have been generated and
intercompared:
2.3.3.1. Reference
[16] The original 60 m TIR data were used in conjunction

with VI-derived model variables at 60 m to create 60 m flux
maps, which were then aggregated to 120, and 240 m.
These maps were used as a reference to which the other
methods were compared.
2.3.3.2. TsHARP
[17] The coarse (960 m) temperature fields were sharp-

ened to 60, 120, and 240 m using the above described
sharpening algorithm (section 2.1). The TSM was executed
at these three finer TIR resolutions to create flux maps at 60,
120 and 240 m.
2.3.3.3. UniFlux
[18] The coarse resolution TIR data were utilized by the

TSM to generate 960 m flux maps. These coarse resolution
fluxes were then uniformly resampled to the finer resolution
grids to create flux maps at 60, 120, and 240 m. These maps
serve as a baseline for assessing the improvement in spatial

information content achieved by sharpening the input ther-
mal imagery.

3. Results and Discussion

[19] Previous studies have demonstrated that TsHARP,
applied to 1-km thermal imagery, provided reasonably
accurate finer resolution TIR maps for the WCW region
[Agam et al., 2007a], and to a lesser extent to the THP
region [Agam et al., 2007b]. Table 1 provides statistics
assessing the impact of TIR sharpening on the resulting flux
evaluations over these two sites, comparing maps generated
with the reference, TsHARP and uniFlux techniques at each
of the target resolutions.
[20] For both sites, the Mean Absolute Errors (MAE) in

net radiation (Rn) and soil heat flux (G) in the TsHARP and
uniFlux maps are relatively small in comparison with the
errors in latent (LE) and sensible (H) heat (Table 1).
Nevertheless, use of sharpened TIR inputs significantly
reduced MAEs in Rn and G in comparison with the uniFlux
results. This enhancement in subpixel agreement is also
evidenced in the scatterplot comparisons in Figure 1,
demonstrating model performance at 240 m resolution.
The large improvement in Rn and particularly G as a result
of sharpening reflects the fact that the TSM representation
of these fluxes is strongly dependent on the assumed leaf

Table 1. Statistical Comparison of Flux Maps Generated With the TsHARP and UniFlux Methods and Reference Flux Fields at 60, 120,

and 240 m Resolution for Walnut Creek Watershed (WCW; Rainfed Agriculture) and Texas High Plains (THP; Irrigated Agriculture)

Study Sitesa

Res., m Method

WCW - Rainfed Agriculture THP - Irrigated Agriculture

Mean (STD),b

W m�2
MAE,
W m�2

Regression Results Mean (STD),b

W m�2 a0

MAE,
W m�2

Regression Results

a0 a1 r2 a0 a1 r2

Rn
60 TsHARP 626 (19) 6 135 0.79 0.69 455 (22) 6 44 0.90 0.87
60 uniFlux 626 (19) 13 469 0.26 0.14 455 (22) 15 325 0.29 0.28
120 TsHARP 626 (18) 5 83 0.87 0.84 456 (21) 5 46 0.90 0.88
120 uniFlux 626 (18) 13 536 0.15 0.47 456 (21) 14 375 0.34 0.33
240 TsHARP 627 (16) 4 78 0.88 0.89 456 (20) 4 40 0.91 0.90
240 uniFlux 627 (16) 10 389 0.38 0.37 456 (20) 12 277 0.40 0.38

G
60 TsHARP 96 (38) 4 3 0.97 0.97 89 (20) 2 3 0.97 0.97
60 uniFlux 96 (38) 18 74 0.27 0.26 89 (20) 14 67 0.25 0.22
120 TsHARP 96 (34) 3 1 0.99 0.97 89 (19) 2 2 0.98 0.98
120 uniFlux 96 (34) 16 64 0.31 0.32 89 (19) 12 63 0.29 0.28
240 TsHARP 97 (29) 2 0 1.00 0.98 90 (18) 2 2 0.98 0.98
240 uniFlux 97 (29) 13 52 0.41 0.41 90 (18) 11 60 0.34 0.33

H
60 TsHARP 131 (72) 30 59 0.48 0.42 196 (46) 28 134 0.27 0.22
60 uniFlux 131 (72) 38 109 0.26 0.21 196 (46) 29 162 0.14 0.16
120 TsHARP 126 (61) 24 48 0.57 0.56 195 (39) 24 125 0.32 0.25
120 uniFlux 126 (61) 40 105 0.27 0.22 195 (39) 26 151 0.20 0.22
240 TsHARP 124 (70) 20 42 0.63 0.65 193 (43) 18 112 0.39 0.30
240 uniFlux 124 (70) 28 94 0.32 0.33 193 (43) 18 134 0.29 0.30

E
60 TsHARP 407 (91) 32 118 0.74 0.72 170 (52) 31 98 0.48 0.32
60 uniFlux 407 (91) 61 334 0.21 0.21 170 (52) 34 129 0.28 0.24
120 TsHARP 405 (81) 26 103 0.77 0.81 172 (48) 27 86 0.54 0.40
120 uniFlux 405 (81) 63 321 0.23 0.25 172 (48) 30 115 0.33 0.29
240 TsHARP 407 (48) 21 95 0.79 0.86 173 (32) 21 65 0.65 0.53
240 uniFlux 407 (48) 48 300 0.29 0.29 173 (32) 26 107 0.40 0.37
aMAE stands for Mean Absolute Error and the regression parameters describe the best-fit line Fmod = a0 + a1Fref, where Fmod and Fref are the sharpened

and reference fluxes, respectively.
bMean and standard deviations were computed from the reference flux maps.
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area index, which is captured at the fine scale in the
TsHARP results.
[21] In contrast, the use of sharpened thermal inputs to

the TSM produced inconsistent results between the two sites
in estimating fine-resolution H and LE. For the THP, the
sharpened thermal imagery only marginally improved TSM-
derived H and LE compared to the uniFlux approach.
However, applying TsHARP over the WCW region reduced
errors in H and LE estimation at the finer resolutions by
30–60% and significantly increased the correlations with
the reference fields (Table 1 and Figure 1).
[22] The absolute magnitudes of the flux errors cannot be

readily compared between the two sites due to marked
differences in climatic conditions between the two imaging
dates. The mean available energy (hRni-hGi, brackets rep-
resent the area-mean flux) was 530Wm�2 in WCWand only
367 Wm�2 in THP, while the mean Bowen ratio (hbi = hHi/
hLEi) was 0.32 and 1.15 for WCW and THP, respectively.
Together, these factors result in largely different distributions
in reference evaporation rate for the two scenes, with
hLEi�400 ± 48 Wm�2 for WCW versus hLEi�170 ±
32 Wm�2 for THP (Table 1). Measures of correlation

provide a more meaningful basis for comparison, reflecting
the ability of the sharpening technique to accurately capture
the range in ET present within each scene. Based on the
linear regression coefficients in Table 1, it is clear that
sharpening more effectively improved correlations in H
and LE with respect to reference fluxes at WCW, improving
R2 by a factor of �2.5 at WCW and only 1–1.5 at THP.
[23] The performance of TsHARP in terms of flux

evaluations over these agricultural regions can be assessed
visually by comparing the 60 m resolution maps of LE
shown in Figure 2. The sharpened thermal images better
reproduce the full range in ET in the reference field for the
WCW site than for the THP site. In addition, the THP maps
suffer from the same ‘‘box-like’’ features that were identi-
fied by Agam et al. [2007b] in the sharpened TIR images,
associated with the reintroduction of the residuals deter-
mined at the coarse scale to the TIR-VI sharpening rela-
tionship. In contrast, these coarse-scale artifacts were not
evident in the sharpened TIR fields for WCW [Agam et al.,
2007a], nor do they appear in the derived ET maps.
[24] The difference in the performance of the sharpening

algorithm in estimating ET over these two sites is due

Figure 1. Energy balance components derived by the TSM using uniFlux and TsHARP inputs are plotted versus those
derived by the reference method at 240 m, for (a) and (b) the Walnut Creek Watershed (rainfed agriculture) and (c) and
(d) the Texas High Plains (irrigated agriculture) study sites. The inserts in Figures 1c and 1d are sensible heat flux and have
the same axis titles and magnitudes as the panels.
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Figure 2. Latent heat flux maps at 60 m spatial resolution derived by the TSM, using the reference, TsHARP, and uniFlux
methods, for the WCW (rainfed agriculture) and THP (irrigated agriculture) study sites. The white areas in the WCW maps
mask urban pixels, for which fluxes were not computed.
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primarily to the spatial scale of moisture variability associ-
ated with rainfed and irrigated agriculture. Land surface
temperature is driven by several factors, but the main
contributors are the fractional vegetation cover (with higher
cover fraction typically associated with lower temperature)
and the soil moisture content (with moister soil having
lower temperature). The sharpening algorithm captures the
relationship between vegetation cover amount and surface
temperature, but cannot account for soil moisture variations
except at the coarse native TIR resolution. For irrigated
agricultural regions, soil moisture variations are often at
field and sub-field scales (adjacent farms may be irrigated
on different schedules, and at times, irrigation is applied
only to portions of fields), thus water stress conditions are
likely to develop locally. The sharpening technique is
unable to detect these sub-thermal-pixel areas of stress
(low LE), as illustrated by Figure 2. The soil moisture in
rainfed agricultural regions, on the other hand, is largely
determined by the spatial extent of precipitation events,
which typically cover much larger areas, often encompass-
ing several coarse (�1 km) pixels. Consequently, water
stress conditions are likely to develop over larger areas and
can therefore be accounted for in the sharpened temperature
fields.
[25] Note that the irrigated THP landscape in Figure 2

exhibits stronger spatial structure at the 1-km (unsharpened)
scale than does the WCW scene. This large-scale structural
component may be contributing to the lower flux errors in
the uniFlux maps over the THP, but it cannot be concluded
that 1-km imagery is therefore sufficient for ET evaluations
over this kind of domain. Based on field-average ET
hLEfieldi estimates drawn from a random sample of 30
fields in each scene, the sharpened hLEfieldi reproduces
the reference flux values from WCW to with 10% for
83% of the fields. In the THP scene, only 40% of the fields
are within 10% of the reference values, with errors for 2 of
the fields (7%) exceeding 150% and significant biases on
both the wet and dry ends of the sampled ET range. For crop
water use and stress monitoring on a pivot-by-pivot basis,
such errors at the field scale would be deemed unacceptable.
Therefore, reliable monitoring of ET using thermal-based
techniques over this type of irrigated landscape requires
thermal imagery at finer native resolutions (i.e., <100 m).

4. Conclusions

[26] In the absence of satellite systems providing fine
resolution (<100 m) thermal satellite data with frequent
(every few days) revisit times, TsHARP provides a valuable
tool for monitoring ET at field scales over the Walnut Creek
Watershed, representing rainfed agricultural areas. In con-
trast, over the Texas High Plains, representing irrigated
agricultural regions, TIR data sharpened from 1 km resolu-
tion and used by the TSM are unable to produce accurate
high resolution ET maps due to sub-pixel variability in
moisture patterns that are not captured by the thermal
sharpening algorithm. Consequently, for precision manage-
ment and decision support systems designed for irrigated
agricultural areas, there is still a need for high resolution
(<100 m) thermal imagery in order to provide important
field-scale crop water use information.

[27] While further study is required to generalize these
conclusions, the results from these two sites are likely to be
representative of typical rainfed and irrigated agricultural
regions during the growing season when such information
would improve water management decisions.
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